Quantcast
Channel: Join eBook, Free eBook Download
Viewing all articles
Browse latest Browse all 3629

Coursera – Introduction to Data Science (2013)

$
0
0
0027215a medium  Coursera   Introduction to Data Science (2013)
Coursera – Introduction to Data Science (2013)
English | MP4 | 960 x 540 | AVC ~72.8 kbps | 30 fps
AAC | 125 Kbps | 44.1 KHz | 2 channels | Subs: English (srt) | 14:00:31 | 3.7 GB
Genre: eLearning Video / Software Engineering, Statistics and Data AnalysisCommerce and research is being transformed by data-driven discovery and prediction. Skills required for data analytics at massive levels – scalable data management on and off the cloud, parallel algorithms, statistical modeling, and proficiency with a complex ecosystem of tools and platforms – span a variety of disciplines and are not easy to obtain through conventional curricula. Tour the basic techniques of data science, including both SQL and NoSQL solutions for massive data management (e.g., MapReduce and contemporaries), algorithms for data mining (e.g., clustering and association rule mining), and basic statistical modeling (e.g., linear and non-linear regression).Categories:
Information, Tech & Design
Computer Science: Systems & Security
Computer Science: Software Engineering
Statistics and Data AnalysisCourse Syllabus
Part 0: IntroductionExamples, data science articulated, history and context, technology landscapePart 1: Data Manipulation, at ScaleDatabases and the relational algebra
Parallel databases, parallel query processing, in-database analytics
MapReduce, Hadoop, relationship to databases, algorithms, extensions, languages
Key-value stores and NoSQL; tradeoffs of SQL and NoSQL
Entity resolution, record linkage, data cleaning

Part 2: Analytics

Basic statistical modeling, experiment design, introduction to machine learning, overfitting
Supervised learning: overview, simple nearest neighbor, decision trees/forests, regression
Unsupervised learning: k-means, multi-dimensional scaling
Graph Analytics: PageRank, community detection, recursive queries, iterative processing
Text Analytics: latent semantic analysis
Collaborative Filtering: slope-one

Part 3: Communicating Results

Visualization, data products, visual data analytics
Provenance, privacy, ethics, governance

Part 4: Guest Lectures

Guest Lectures: AMPLab, Datameer, SciDB, more

More Info: https://www.coursera.org/course/datasci


Viewing all articles
Browse latest Browse all 3629

Trending Articles