Quantcast
Channel: Join eBook, Free eBook Download
Viewing all articles
Browse latest Browse all 3629

Computer Vision: Models, Learning, and Inference

$
0
0
 Computer Vision: Models, Learning, and Inference
Dr Simon J. D. Prince, “Computer Vision: Models, Learning, and Inference”
2012 | ISBN-10: 1107011795 | EPUB + PDF | 600 pages | 35 MB + 26 MB

This modern treatment of computer vision focuses on learning and inference in probabilistic models as a unifying theme. It shows how to use training data to learn the relationships between the observed image data and the aspects of the world that we wish to estimate, such as the 3D structure or the object class, and how to exploit these relationships to make new inferences about the world from new image data. With minimal prerequisites, the book starts from the basics of probability and model fitting and works up to real examples that the reader can implement and modify to build useful vision systems. Primarily meant for advanced undergraduate and graduate students, the detailed methodological presentation will also be useful for practitioners of computer vision. – Covers cutting-edge techniques, including graph cuts, machine learning, and multiple view geometry. – A unified approach shows the common basis for solutions of important computer vision problems, such as camera calibration, face recognition, and object tracking. – More than 70 algorithms are described in sufficient detail to implement. – More than 350 full-color illustrations amplify the text. – The treatment is self-contained, including all of the background mathematics.

EPUB

Note: There is a file embedded within this post, please visit this post to download the file.
Note: There is a file embedded within this post, please visit this post to download the file.
Note: There is a file embedded within this post, please visit this post to download the file.

PDF

Uploaded


Viewing all articles
Browse latest Browse all 3629

Trending Articles